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1. Introduction and Terminology

~-J Suppose G is a graph with p points and let n be a positive integer
such that p > 2n + 2. Graph G is said to be n-extendable if every
matching\of size n in G extends to a perfect matching.(We-will-ab-- =

is called bigritical if G — u ~ v has a perfect matching, for all pairs of
points u, v € V(G). In{EP2} a canonical decomposition theory for graphs
in terms of their maximum (or, when present, perfect) matchings is dis-
cussed at length. Bicritical graphs play an important roll in this theory.
In particular, those bicritical graphs which are 3-connected (the so-called
bricks) currently represent the atoms” of the decomposition theory in
that no further decomposition of these graphs has been obtained as yet.
Indeed at present we seem far from an understanding of the structure of
bicritical graphs or even that of bricks. O R N
Although interesting in its own right, the study of n-extendability
became more important when in {P¥it} it was shown that every 2-ex- - = =
tendable non-bipartite graph is a brick and that, for n > 2, every n-
extendable graph is also (n — 1)-extendable. Thus we have available for
study a nested set of subcollections of bicritical graphs. - -
The results of the present paper will be presented in two parts.
In Section 2, we present some new procedures for constructipgiinfinite

* work supported by Grant UGC 32-635.**work supported by ONR Contract #
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and the University of Otago
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families of bricks by means of constructing families of non-bipartite 2-
extendable graphs.

In Section 3, we focus our attention on extending matchings in planar
graphs. Planar 1-extendable graphs abound; for example, every cubic 3-
polytopal graph has this property. On the other hand, it has been shown
[Plu2] that no planar graph is 3-extendable. Between these extremes,
then, lies the class of planar 2-extendable graphs.

We will further restruct our attention in Section 3 to cubic 3-connect-
ed planar graphs (or cubic polytopal graphs, as they are sometimes
called). Which of these graphs are 2-extendable? Our main result states
that any cubic polytopal graph which is cyclically 4-connected, but has
no quadrilateral face, is 2-extendable. (Clearly, if such a graph has no
quadrilateral face, it can have no cycle of length 4 at all.) In particular,
cubic polytopal graphs with cyclic connectivity at least 5 must be 2-
extendable.

2. Some families of bicritical and 2-extendable graphs

The complete graphs on an even number of points, {K3,}S2., are

trivially bicritical, as are the wheel graphs with even total number of
points. (A wheel graph is obtained by joining every point of a cycle to
a common point (or “hub”) not on the cycle.) The first non-trivial class
of graphs proven to be bicritical seems to be the class of Halin graphs.
(See [LP1]. These graphs have also been called based polyhedra by
Rademacher [R1] and roofless polyhedra by Pélya.) These graphs are
sometimes indicated by T U C where T is a tree on an even number of
points in which each non-endpoint has minimum degree 3, and C is a
cycle through the endpoints of tree T so that T U C is planar.

For 1 = 1,2, let G, be a graph containing a point v, of degree 3. v
Further suppose that the neighbors of v, in G; are {z,,y,, 2,}. Let us ’
denote by G,(v,v2)G2 (or simply G, 2 when the v;’s are understood) the ‘
graph obtained from G, and G, by deleting points v; and v; and then S
inserting the lines z,z2, y,y2 and z;z;. We shall have occasion to call - J—q
this operation 3-joining. (See Figure 2.1.)

2.1. THEOREM. Suppose G,, G2, v\, va and G, ; are as given
above. Then: o

(a) if G, and G2 are bicritical, so 1s G, ;. _ML_ d?#

(b) f G, and G2 are 2-extendable and non-bipartite, so 1s 7y ».

PROOF. Let G/ =G, - v, for i =1,2. To prove (a), let u; and u» S
be two distinct points in graph G, 2. First suppose u;. uy € V(). Let v
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FIGURE 2.1.

P; be a p.m. of Gy — u; — u3 and without loss of generality let v,z; be
the line of Py covering point v;. Then let P, be a p.m. of G, containing
line v2z2. (Remember that every bicritical graph is 1-extendable.) Then
PiLUP; — vy —~ vz + 2122 18 & p.m. for 01,2 — U} — Ug.

Now suppose u; € V(G') and u; € V(G%). Let P; be a p.m. for
Gi—u;—v, for i =1,2. Then P, UP; is a p.m. in Gy 3.

To prove (b), let e; and e; be two independent lines in G, 2.

Before proceeding, let us note that since each G, is 2-extendable,
|[V(G,)| = 6 and hence {z,,y;,2;} is a cutset in G;. Moreover, by
Theorem 3.2 of [Plul], each G; is 3-connected. But then by Theorem 2.2
of [Plu3| each cutset {z,, y;, z;} is independent in G,.

Now suppose that {e;,e;} C V(G}). Let P, be a p.m. of G,
containing e, and e;. Since {z,,¥), 21} is independent, without loss of
generality we may assume that z,v; is the line of P, covering point
vi. Then if P; is a p.m. of G, containing line zyvy, the matching
PyUP; —z,v) —zqv2 + 2125 is a p.m. for G, ; containing e; and es.

Secondly, suppose e, € E(G') and e; € E(5%). Now line e, meets
at most one of the points z,,y, and z, since {z,, y,, 2,} is independent
in G,, so among the pairs {z,,z2}, {y1,y2} and {z;, 22} we can choose
one - say {z,,z;} - such that neither z, nor z; is covered by either e,
or e;. For1=1,2, let P, be a p.m. for G, containing e, and z,v,. Then
PLuUP; - zyv) ~ z2v2 + 2,25 is a p.m. for G 2 containing e, and es.

Thirdly, suppose ¢, = z,z2 and e; € E(G5). Let P, be a p.m. for
G, containing z,v; and let P, be a p.m. for G2 containing z2vo and es.
Then P, U P; — ryvy — zqvy + 1,22 is a p.m. for G, ; containing e, and
€.

Finally, suppose {e;,e2} C {z,z3, y1y2, 2122}, say without loss of
generality that e, = r,1; and e; = y,y2. Now since each , is non-




4

bipartite, it is bicritical by Theorem 4.2 of [Plul] and hence G; — z; — ¥;
has a p.m. P;. Moreover, P; must contain line v,;z;. But then P, U P, —
V121 — U222 + 2122 +€; + €2 is a p.m. for G2 containing lines e; and e;.

It only remains to show that G, 2 is non-bipartite. But since G,
"and G are both non-bipartite, they are bicritical (again using Theorem
4.2 of [Plul]) and hence by part (a) of the present theorem, G, ; is also
bicritical. But no bicritical graph is bipartite and this completes the
proof. ]

Since the operation of 3-joining preserves the properties of being
cubic, 3-connected and planar, it may be used to obtain infinite families
of bicritical polytopal graphs and infinite families of 2-extendable cubic
3-polytopal graphs. For example, let G, and G2 be two copies of the
dodecahedron and let v; be any point in G; for + = 1,2. Then G, 2 is
again 2-extendable and, since it is non-bipartite, it is also bicritical.

Let us point out that the complete graph on four points, Ky, is a
much smaller starting graph for generating bicritical graphs by 3-joining
than is the dodecahedron, but K4 is not 2-extendable. Note that if one
joins two copies of K4 together via a 3-joining, the resulting 6-point
graph (the so-called triangular pyramid) is not 2-extendable either.

It is also interesting to point out that, although 3-joining preserves
2-extendability in non-bipartite graphs, this operation when applied to
bipartite graphs, never preserves 2-extendability! More particularly, see
Corollary 2.3 which follows the next theorem.

A set of lines L = {e;,...,ex} € E(G) is a cyclic k-cut in a
connected graph G if G — L consists of two components each of which
contains a cycle.

2.2. THEOREM. Suppose G 1s a 2-extendable graph with a cyclic
3-cut L = {e1,e2,e3}. Then 1f H, and H, are the components of G- L,
nesther H, nor H, 1s bipartite.

PROOF. Suppose L = {e},ez,e3} is a cyclic 3-cut and that e; =
I,Z2, e = y1y2 and e3 = z,2; where {z,,y,,2,} C V(H,). Let H, =
H-z,-y,—2 for1=1,2.

First we claim that L is a matching. For suppose not. Without loss of
generality, we may suppose that e, and e; are adjacent at point z;, = y;.
Then since H; contains a cycle, it must contain a point u & {z;,y, 21 }.
But then {z,,2;} is a cutset in G. (We point out that z; may or may
not be different from z, = y; here.) But this contradicts the fact that &
must be 3-connected by Theorem 3.2 of [Plul] and the claim is proved.

Suppose that V(H') = 0. Then since G is 3-connected, H; must
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be a triangle on points z;,y; and z;. But then let f be any line in
H, incident with zq, y2 or zo. Without loss of generality, suppose f is
incident with zz. Then lines {f,y12:} do not extend to a p.m. in G, a
contradiction. |

Thus we may assume both V(H!) 5% @ and V(HY%) # 0. However,
then for both ¢+ = 1,2, the set {z;,y;,2;} is a point cutset in G and
again by Theorem 2.2 of [Plu3], each is independent. But then since
mindeg G > 3, it follows immediately that |V(H')| > 2, for i = 1,2.

Suppose now that Hg is bipartite. There are then two cases to treat,
depending upon the parity of |V(H3)|.

(a) Suppose first that |V(H3)| is even. Let the bipartition of Hz be
(A2, B2). Then among the points z3, y2, 22 some two must belong to the
same color class. Without loss of generality, suppose that z,,y, € As.
Now let P, be a p.m. of G containing lines e; and e2. By parity, P,
must match zz into HY. Hence |A2| = |B2| + 2.

But now since |V(H3)| 2 2, and {z2,y2,22} is an independent
cutset, there must be two independent lines joining z2 and y; to two
points in V(HY). Call these lines f, and f,. Let P, be a p.m. of G
containing lines f; and f,. Then by parity, since Hy is even, P, must
match z; into H) as well. So P; restricted to Hz is a p.m. of H, and
hence |Az| = |Bz|, a contradiction. Hence |V(H3)| cannot be even.

Suppose, therefore, that |[V/(Hz)| is odd. As before, we may assume
that (Ag, B;) is the bipartition of Hy with z2,y2 € Ag.

First suppose that 2z, € A; as well. Let P; be a p.m. for G containing
e; and e — and hence by parity — e3 as well. Thus |A;| = |B;| + 3.
Once again, as in Case (a) above, there must be two independent lines f,
and f, matching z2 and y; into H,. Let P, be a p.m. of G containing
f1 and f;. Then by parity, P4 contains e3. But then {A2| = |Bz| + 1, a
contradiction.

Thus we may assume that z; € B;. Let P;s be a p.m. of G containing
ey and e; and — by parity — e3 as well. Thus |A;| = |Ba| + 1.
But as before, without loss of generality, we may assume there are two
independent lines f, and f; matching z2 and y; into H),. Let Ps be a
p.m. for G con.aining lines f, and f,. Then, by parity, line e3 = 2,2, €
Pg. Then |Az| = |Bz| — 1, a contradiction.

Thus H; is not bipartite and, similarly, neither is H,. [

2.3. COROLLARY. [f G 1s a 2-extendable bipartite graph, then (;
18 cyclically 4-connected. [

We can in fact be a bit more precise about just which sets of two
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independent lines extend to p.m.’s in a graph obtained from two bipartite
2-extendable graphs by 3-joining. To this end we provide the following
result.

2.4. THEOREM. Let G, and G2 be 2-extendable bipartite graphs
and suppose v; € V(G,) and va € V(G3) are both points of degree 3.
Then: ‘

(@) the 3-join graph Gi(v1v2)G2 = G2 i3 l-extendable and bipartite
and

(8) if e1 and ez are two independent lines in G 2 then they extend to a
p.m. of G2 if and only if at least one of e; and ez s not a join line.

PROOF. Suppose the bipartition of G; is A; U B; where v; € A; for
t = 1,2. Then |Ai| = |B;| and (B; U A2 —v2) U(A; UBz —vy) is a
bipartition of G, ;.

Now let e; and e; be independent lines in G, 2. If {e;,e2} C E(G)),
if e; € E(G)) and ez € E(G}), or if e, is a join line and e; € E(G5), say,
then {e;, e} extends to a p.m. of G, 2 by Theorem 2.1(b).

So suppose e; = z,z2 and e; = y,y2 are both join lines. Further,
suppose that P is a p.m. for G, 2 containing e; and ez. Then since
[V(G?)| is odd for ¢ = 1,2, P must contain e3 = 2,22 as well. But
{z1,¥1,21} € By and hence P must match B] = B, — {z, 41, 21} onto
A, — vy which is impossible since |B|| = |A; — v1| — 2. Thus there is no
p.m. for G, 2 containing e; and e;. This completes the proof of part
(b).

It remains only to show that every join line extends to a p.m. of
G 2. Let us consider the join line e = z,z,. Now each G, is 1-extendable
by Theorem 2.2 of [Plul]. Thus let P, be a p.m. for G, — z, — v, for
1=1,2. Then P=P,UP; — 1 v; —Z2v2+ 2,22 isa p.m. for G; 2. ®

We now present a second construction. Again for t = 1,2, let G, be
a graph containing a point v, of degree 3. Suppose once again that the
neighbors of v, in G, are {z;, yi,2,}. Let us denote by G ,hex(v,, v3)G2
(or simply G hexG; when the v,’s are understood) the graph obtained
from G, and G, by deleting v, and vy, adding a hexagon on 6 new
points, ayazbybac cza,, and adding lines z,a,, y:b, and z,c, for 1 = 1,2.
We will call GihexG, a hex-join of G, and G,. (See Figure 2.2.)

We then have the following result which is parallel to Theorem 2.1.

2.5. THEOREM. Suppose G,,G2, vy, vy and G hexG, are as given
above. Then:
(a) If Gy and G, are bicritical, so 1s GhexG,, and

O M AR y 8y k () ] " " Y ‘-f"*.-
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FIGURE 2.2.

(b) If Gy and G2 are 2-eztendable and non-bipartite, then so ts G hexGa.

PROOF. (a). The proof here is in much the same spirit as the proof
of part (a) of Theorem 2.1. Hence we will treat only one representative
case and leave the rest to the reader. (Again we adopt the labeling shown
in Figure 2.2. The reader should observe that the symmetry displayed
in Figure 2.2 substantially reduces the number of cases which need to be
treated.)

Let us suppose that u € {a;,b;,¢c1}. Without loss of generality,
suppose that u; = a;. Also suppose v € {ag, bz, c2}. By symmetry we
need treat only two subcases, namely when v = a, and when v = b,.

If v=ay let P, be ap.m. of G-y, —v; and let P; be a p.m.
of G2 — y2 —vz. Then P, U P; + y1by + y2b2 + z1¢2 is a p.m. for
(G1hexG2) —u —v. If v = by, let P; be a p.m. for G; —y; —v; and Ps,
a p.m. for G2 — 22 —vy. Then P, UP; + y1b; + z2a2 + c1¢2 is a p.m. for
(G1hexG32) — u — v.

Similarly, the proof of part (b) here mimics that of Theorem 2.1.
We therefore present only two representative cases, one in which the
bicriticality of G; and G, is used (and hence the assumption that each
is non-bipartite) and one in which it is not used.

So first let e, = zja; andd e; = y;b;. We seek a p.m. for




G1hexG2 containing e; and e2. Since G, is bicritical, there is a p.m.
P; for G, — z; — y; and it must contain line 2,v;. Similarly, there is
a p.m. P for G; — 22 — y2 and it must contain line z3v,. But then
P, U Py — z1v; —.2u3 + 2141 + Y101 + 2101 + 22a2 + Yy2by + 23¢2 is a p.m.
for G1hexG2 containing e; and ea.

Finally, let ¢; = aja2 and e3 = b1b2. Then let P; be a p.m. for
G, containing z;v; and P, be a p.m. for G2 containing zzve. Then
Py UP; — z2yv) — 29u3 + 21€1 + 22C2 + ajag + by1bs is a p.m. for G1hexG2
containing e; and es. n

3. The main result

Recall from the previous section that the construction procedures
called 3-joining and hex-joining preserve the properties of 3-regularity,
3-connectivity, planarity, bicriticality and 2-extendability. On the other
hand, since each of these operations automatically inserts a cyclic cutset
of size 3, cyclic connectivity is not necessarily preserved.

A question which arose early in the studies culminating in this paper
was whether or not a cubic 3-connected planar graph (hereafter called a
simple 3-polytopal graph) of sufficiently high cyclic connectivity must
be 2-extendable. (For more information on polytopal graphs, the reader
is referred to the classical book of Griinbaum [G1]. Suffice it to say, for
our purposes, that the 3-connected planar graphs are called polytopal
because they are just the skeleta of 3-polytopes by a celebrated theorem
of Steinitz [S1].)

Examples showing that cyclic 3- and 4-connectivity are not sufficient
to insure 2-extendability in cubic 3-polytopal graphs are presented at the
end of this section.

We now present our main result.

3.1. THEOREM. IfG isa cubic 3-polytopal graph which s cyclically
4-connected and has no faces of size 4, then G 1s 2-eztendable.

PROOF. Before proceeding, we would point out that the hypotheses
of this theorem imply that G cannot have any 3-cycles or 4-cycles.

Now suppose G satisfies the hypotheses of the theorem, but is not 2-
extendable. So let e; = z,¥; and e; = z2y2 be two independent lines in
G which do not lie in 2 p.m. for G. Thus graph G' = G-z, -y —z2—-y2
has no perfect matching and hence, by Tutte’s classical theorem on
perfect matchings, there is a set S’ C V(G) such that ¢,(G' - S’) > ||,
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where ¢,(G’ — S’) denotes the number of odd components of G’ — S’.
Then since |V(G’)] is even, parity dictates that ¢,(G' — S’) > |S'| + 2.

Suppose in fact that ¢,(G’' — S§’) > 1S’|+3 and hence again by parity
that ¢,(G'—S’) > |S/| +4. Now G is l-extendable, by a result of Plesnik
[Plel] (and independently by a result of Little, Grant and Holton [LGH1,
LGH2)). So line ez = z3y; liesin a p.m. for G and hence G = G—z2—y,
has a p.m. But then in G” we have a set S” = S’ U {1, y1} such that
co(G" — 8") = ¢o(G' = S') > |S'| + 4 = |S"| + 2. But then by Tutte’s
Theorem, graph G” has no p.m., a contradiction. Thus ¢,(G' — §') =
|S!] + 2.

Let S = S' U {z1,y1,22,y2}.- We claim that G — S has no even
components. For suppose C, were such an even component. Then since
G is 3-connected, there must be at least 3 (and hence by parity, at least
4) lines from C, to S. These lines, together with e; and ez, imply that no
more than 3|S|—8 lines are sent from S to the odd components of G—S.
But viewing these lines from G — S, each odd component must send at
least 3 lines to S and hence there are at least 3(|S|—2) = 3|S|—6 of these
lines, so we have a contradiction. Thus G — S has no even components.

Let N denote the number of lines joining S to G — S. Note that
since G is 3-connected, each odd component of G— S must send at least 3
lines to S and hence N > 3(|S|—2) = 3|S|—6. So we have the inequality
3|S|—6 < N < 3|S| —4. Accordingly, there are three cases to consider.

Case 1. Suppose N = 3|S| —6. So in S there exists precisely one
more line ez, in addition to lines e; and ez, and each odd component of
G — S sends exactly 3 lines up to S. Thus up to a relabeling of the three
e;, G has the appearance of one of the three graphs shown in Figure 3.1.

Henceforth we will denote by Cy, Cy, ..., C|s|—2 the odd components
of G- S.

Suppose now that all the C;’s are singletons. Then a well-known
variation on Euler’s formula relating the number of points, lines and faces
of any planar graph yields }_;(6—2)f; = 12, where f; denotes the number
of faces containing % lines in their boundary. Hence 3f3 + 2f4 + f5 > 12
and since f3 = f4 = 0, we must have fs > 12. But G —e; — ez —e3 is
bipartite, and it then follows that fs < 6, a contradiction.

Hence we may assume that there exists one of the C; — say C; —
with |[V(Cy)| > 3.

Claim 1. Component C; contains a cycle.

For suppose not. Then it must be a tree with at least 2 endpoints
and hence it must send at least 4 lines to S, a contradiction.

Claim 2. Subgraph G; = G[V(G) — V(C}))] contains a cycle.
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FIGURE 3.1.

Suppose not. Then G, is a forest containing at least 3 lines, so it
must contain at least 2 endpoints. But then G; must send at least 4 lines
down to C;, again a contradiction.

So we have shown that the 3 lines joining C; to G; are a cyclic cutset
of size 3, contradicting the hypothesis that G is cyclically 4-connected.

Case 2. Suppose 3|S| — 5. But then since there are exactly |S| — 2
odd components in G— S and each must send at least 3 lines to S by the
3-connectivity of G, we must have one odd component of G — S sending
exactly 4 lines to S and all the rest sending exactly 3. But G is cubic, so
it is impossible for any odd component of G — S to send an even number
of lines to S and we have a contradiction.

Case 3. So we may assume that 3|S| -4 = N. So there must
be exactly two lines in the induced subgraph G[S] and they must be €,
and e;. Since no odd component of G — S can send exactly 4 lines to
S by parity, but all odd components must send at least 3 lines to S
by 3-connectivity, we must have exactly one odd component of G — S,
without loss of generality say it is C;, sending at least 5 lines to S.
(So component C), must contain at least 3 points.) But then we have
3|S| -4 =N 25+ 3(|S| - 3) = 3|S| — 4, and it follows that we must
have ezactly one odd component which sends ezactly 5 lines to S, this odd

MK P P
‘,‘i”"s‘g (Y X Ky Al
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FIGURE 3.2.

component must contain at least 3 points and all other odd components
of G — S send exactly 3 lines to S.

Let C; be any other odd component of G — S different from C;.
Suppose component Cz is not a singleton.

By the arguments of Claims 1 and 2 of Case 1 above, component Co
and subgraph G[V(G) — V(C2)] both contain cycles.

But then we have a cyclic cutset joining C2 and G2 containing ex-
actly 3 lines, contradicting the hypothesis that G is cyclically 4-connected.

Thus component C; is an odd component sending exactly 5 lines to .S
and all the remaining odd components of G — S, namely, Co, ..., C|q|_2,
are singletons incident with exactly 3 lines from S. {See Figure 3.2.)

Claim 3. Component C; contains at least 5 points.

Suppose not. Then |V(C;)| = 3. But then C; must be a path of
length 2, since we know graph G contains no triangles. Let the two
adjacent lines of C; be denoted by e5 and eg. As before, using the Euler
formula to do a face count, we have 3f3 + 2f4 + fs > 12 and, since
fa = f4 =0, we have f5 > 12. But G —e; — e; — e5 — eg is bipartite and
hence G has fs < 8, a contradiction and Claim 3 is proved.

Claim 4. Component C; contains a cycle.

If not, it must be a tree with at least 2 endpoints and hence sends
at least 4 lines to S. If it had at least 3 endpoints, it would have to send
at least 6 lines to S, a contradiction. Thus tree C; contains exactly 2
endpoints and hence must be a path. But since C; sends exactly 5 lines
to S, it must be a path of length 2, contradicting Claim 3.
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Let G’ denote the graph obtained from G by contracting component
C, to a single point u;. Of course G’ is planar since G is and G’ has
a single point u; of degree 5 and all others of degree 3. It is possible
that by contracting C; to a point we have introduced parallel lines in
G'. However, if p’ = |[V(G')|, ¢ = |E(G’)| and r' denotes the number of
faces in any imbedding of graph G’ in the plane, using Euler’s formula, we
have ) (6 —1)f, = 6r'—2¢ = 6r'-3p'—2=6(2+¢ —p’')-3p' -2 = 16,
since in G’ we have 2¢ = 3p’ + 2. So, in particular, in G’ we have
afL +3f5 +2f + ft > 16.

Now since induced subgraph G[S] contains only 2 lines, there can be
at most 4 odd faces in G’. Hence f4 + fi < 4. Thus 2f, + f4 + f, > 6.
But G has no faces of size 3 or 4, so all triangular or quadrilateral faces
in G' must contain u; in their boundary. Thus in G’ we also have But
since degu; = 5 in G’, we also have f; + f), < 5. Hence f, > 1. This
implies that in G we have |V(L) N S| < 4 where L denotes the set of
lines joining component C; to G[V(G) — V(C1)]. There are thus only 2
possible values for |V(L)N S| and we now proceed to treat each.

Case 3.1. Suppose |[V(L)N S| = 3. _

Let vy, v and v3 be the 3 points of S adjacent to points of C;. Note
that if any of these v;’s is adjacent to 3 points of C1, then the other two
together form a cutset of G of size 2, contradicting the hypothesis that G
is 3-connected. So we must have 2 of the v;’s incident with 2 lines to C;
and the third v; incident with 1 line to C;. Without loss of generality,
assume that vy, vy are each adjacent to 2 points of C; and v3 is adjacent
to 1 point of C,.

Note that since G is 3-connected, {v;, v, v3} is an independent set.
Now let f; be the line joining v; to a point not in C; for 1 = 1,2,
and let f3 be the line joining vz to C;. Then {fi, f2, f3} is a cutset in
G separating Gz = G[V(C;) U {v1,v2}] from G3 = G[V(G) -V (Cy) —
{v1, v2}]. (See Figure 3.3.) Moreover, G2 contains a cycle since it contains
component Cj.

We claim that G3 also contains a cycle. Suppose not. Then G3 is a
forest containing the 2 lines e; and e; and hence is a forest containing at
least 2 endpoints. Thus G3 senas at least 4 lines to G2, a contradiction.

Thus {f1, f2, fa} is a cyclic cutset of size 3 in G, contradicting the
hypothesis that G is cyclically 4-connected.

Case 3.2. Suppose |V(L)N S| = 4.

Let v; be the point of S adjacent to 2 points of C; and v, vz, vy
be the rest of V(L) N §. Let w be the point adjacent to vy which lies
outside of V(C,).

nr A
)
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N FIGURE 3.3.

First suppose v, is adjacent to one of vg, v3 or vy; say, without loss
XD of generality, to v, via line e;. Let the lines joining v; to C; be f; for
1 = 2,3,4. Finally, let g be the line incident with ve, where g 7 e; or
f2. Then {g, f3, f4} is a cutset in G separating J;, = G{V(C;)U {vy, v2}]

o from the rest of G. Let us denote G[V(G) — V(J1)] by J2. Note first
::f that J; contains a cycle since C; does.
¥ Claim 5. Subgraph J2 contains a cycle.

Suppose not. We know that J, contains line e; and hence is a
‘{ forest with at least 2 endpoints. So J; sends at least 4 lines to Ji, a
j contradiction.
’3:’ Thus {g, f3, f4} is a cyclic cutset in G, contradlctlng the hypothesis
- that G is cyclically 4-connected.
X So we may assume that v; is adjacent to none of the points vq, v3, v4;
= that is, w & {vq, v3, vs}.
o Now contract the subgraph G[V(C;)U{v;}] to a single point ¢; and

P
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FIGURE 3.4.

call the resulting graph G”’. (See Figure 3.4.)

The graph G’ has all points of degree 3, with the single exception
of point ¢; which has degree 4. Let p"”/, ¢ and r’’ denote the number
of points, lines and faces of graph G" respectively. Then doing an Euler
face count in G", we have ) (6 —1)f/ = 6r'" —2¢"" = 6" —(3p"”' +1) =
14. So in particular, we have 419 + 3f4' + 2f%' + f¥ > 14.

But w ¢ {vg,v3,vs}, so fi =0, and so in G"” we have:

3f3 + 2/ + f§' 2 14 (4)

We also know that since dege; = 4 in G,

f3+fy <4 (B)

Now either w € S or w is a singleton component of G — S different
from C;.

Suppose that w € S. Then any triangle or quadrilateral in G must
use one of the lines e; or es, so

/3 +f5 <4 (€)

But then if we compute (A) — ((B) + (C)) we obtain f4' + f' > 6
which contradicts inequality (B).

So we may suppose that w is a singleton component of G — S.

Let line ¢, w be denoted by h in G"”. Let the 4 faces at point ¢; be
denoted F, F3, F3 and F, as shown in Figure 3.5.
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Note that since lines e; and e; are independent, at most one of F;
X and Fj is a triangle.
X 3.2.1. First suppose that Fj is a triangle.
N 3.2.1.1. Suppose that face F, is also a triangle. (See Figure 3.6.)

Then if F3 is a triangle, the points {ve, v3} are a cutset in G, a contradic-
tion. Thus Fj is not a triangle and by symmetry, neither is F;. But then
let ho = voz, 2 & {c1,w}, h3 = v3c; and hy = v4y, y € {c1,w}. Then
{he,h3, hs} is a set of 3 independent lines separating cycle voc, wvs, for

K Z‘Jl--. 2.,_5.’; _‘1,3“, “\i", 0.' 14;"3’3‘ i‘;‘.l“'?', L) i) b“-_‘ DR . E B0y ‘L‘: O
. AN e e . P
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FIGURE 3.7.

example, from a subgraph H" of G" containing 3 points of degree 2 in
H"' namely r,v3, and y. Moreover, since G is 3-connected, subgraph
H'"' must be connected and hence {hy, h3, hy} is a cyclic 3-cut, a con-
tradiction.

3.2.1.2. So suppose face F; is not a triangle. Since e, and e, are
independent, at most one of F; and Fj is a triangle. Hence f4§' < 2.

If /' =1, then f/{/ < 3 and f¥ < 4. But then 2/ + f{' + [V
and combining this inequality with inequality (A). we obtain f%'+ f
which contradicts inequality (B).

So we may conclude that f% = 2 and hence exactly one of F, and
F3 1s a triangle.

3.2.1.2.1. Suppose F?7 is a triangle. In particular. suppose line ¢,
joins points ve and v3. Then e; is not incident with vo. so 2 must be
adjacent to a point r in G — S, where £ # w. But r cannot be adjacent
to w, so face F| cannot be a quadrilateral. So f7' < 1. It then follows
that '+ f4'+ f5' < 6 and hence ' + ' > 6. contradicting inequality
(B).

3.2.1.2.2. Now suppose F3 is a triangle. (And face Fi is not 4
triangle.) So we may assume that line e, joins points v3 and v,

We know that F)) is not a triangle.

If face F) is not a quadrilateral, we get the same contradiction that
we obtained in Subcase 3.2.1.2.1, so suppose F; is a quadrilaterai 1 See
Figure 3.7.)

Thus line e; must join point vs to a point y in S and. in addition,

9

o'
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N y 1s adjacent to w.
\:" So fy' =2 fV <2and f{ <2 Butthen 2fy + f{'+ 7 < % and
o combining this inequality with inequality (A), we »btain f§ + f{' > 6

which contradicts inequality (B).

B 3.2.2. Suppose now that Fj is not a triangle. (And by symmetry.
Ri we may also suppose that F| is not a triangle either.) Thus f4’ < 1. Now
R if f4 = 1. then f{' < 3 and f¥ < 3. while if f{’ = 0. then f{ < 4

and f? < 4. But in either case, 2f7 + f/ + f¥' < 8 and once again
, combining this inequality with inequality {A), it follows that f{'+ f{" > 6
- and again we have a contradiction of inequality (B).

This completes the proof of the theorem. [ ]
The following corollary is now immediate.

. 3.2. COROLLARY. IfG s a cubic. 3-connected, planar graph and,

L in addition. 1s cycheally 5-connected. then (i 15 2-extendable. -
9#
s We conclude with several remarks as to the sharpness of Theorem
B 3.1. First we note that there are graphs which satisfv the hvpotheses of
I,ﬁ Theorem 3.1, but not those of Corollary 3.2. Such a graph 1s displaved
2

e in Figure 3.8.

' We now observe that our theorem 1s best possible 1n the sense that
we cannot weaken the assumption that the cvelic connectivity is 4 to the
assumption that it is only 3 in Theorem 3.1. The graph in Figure 39
1s cubic, 3-connected and planar without anv tnangles or quadrnilaterals,

but it 1s not 2-extendable. (Lines ¢; and e, do not extend to a4 p.m |
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FIGURE 3.9.

Rt

i FIGURE 3.10.

Finally, in Figure 3.10 we exhibit a graph which is cubic, 3-connected,

: planar and cyclically 4-connected, but not 2-extendable. (Lines ¢, and e.

" do not extend.) Of course, by Theorem 3.1. such a graph must contain
a quadrilateral and the example we display contains two such.
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